Source module last modified on Thu, 2 Jul 1998, 23:17;
HTML image of Fortran source automatically generated by
for2html on Sun, 23 Jun 2002, 15:10.
SUBROUTINE CGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY )
# .. Scalar Arguments ..
COMPLEX ALPHA, BETA
INTEGER INCX, INCY, KL, KU, LDA, M, N
CHARACTER*1 TRANS
# .. Array Arguments ..
COMPLEX A( LDA, * ), X( * ), Y( * )
# ..
#
# Purpose
# =======
#
# CGBMV performs one of the matrix-vector operations
#
# y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
#
# y := alpha*conjg( A' )*x + beta*y,
#
# where alpha and beta are scalars, x and y are vectors and A is an
# m by n band matrix, with kl sub-diagonals and ku super-diagonals.
#
# Parameters
# ==========
#
# TRANS - CHARACTER*1.
# On entry, TRANS specifies the operation to be performed as
# follows:
#
# TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
#
# TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
#
# TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
#
# Unchanged on exit.
#
# M - INTEGER.
# On entry, M specifies the number of rows of the matrix A.
# M must be at least zero.
# Unchanged on exit.
#
# N - INTEGER.
# On entry, N specifies the number of columns of the matrix A.
# N must be at least zero.
# Unchanged on exit.
#
# KL - INTEGER.
# On entry, KL specifies the number of sub-diagonals of the
# matrix A. KL must satisfy 0 .le. KL.
# Unchanged on exit.
#
# KU - INTEGER.
# On entry, KU specifies the number of super-diagonals of the
# matrix A. KU must satisfy 0 .le. KU.
# Unchanged on exit.
#
# ALPHA - COMPLEX .
# On entry, ALPHA specifies the scalar alpha.
# Unchanged on exit.
#
# A - COMPLEX array of DIMENSION ( LDA, n ).
# Before entry, the leading ( kl + ku + 1 ) by n part of the
# array A must contain the matrix of coefficients, supplied
# column by column, with the leading diagonal of the matrix in
# row ( ku + 1 ) of the array, the first super-diagonal
# starting at position 2 in row ku, the first sub-diagonal
# starting at position 1 in row ( ku + 2 ), and so on.
# Elements in the array A that do not correspond to elements
# in the band matrix (such as the top left ku by ku triangle)
# are not referenced.
# The following program segment will transfer a band matrix
# from conventional full matrix storage to band storage:
#
# DO 20, J = 1, N
# K = KU + 1 - J
# DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
# A( K + I, J ) = matrix( I, J )
# 10 CONTINUE
# 20 CONTINUE
#
# Unchanged on exit.
#
# LDA - INTEGER.
# On entry, LDA specifies the first dimension of A as declared
# in the calling (sub) program. LDA must be at least
# ( kl + ku + 1 ).
# Unchanged on exit.
#
# X - COMPLEX array of DIMENSION at least
# ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
# and at least
# ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
# Before entry, the incremented array X must contain the
# vector x.
# Unchanged on exit.
#
# INCX - INTEGER.
# On entry, INCX specifies the increment for the elements of
# X. INCX must not be zero.
# Unchanged on exit.
#
# BETA - COMPLEX .
# On entry, BETA specifies the scalar beta. When BETA is
# supplied as zero then Y need not be set on input.
# Unchanged on exit.
#
# Y - COMPLEX array of DIMENSION at least
# ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
# and at least
# ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
# Before entry, the incremented array Y must contain the
# vector y. On exit, Y is overwritten by the updated vector y.
#
#
# INCY - INTEGER.
# On entry, INCY specifies the increment for the elements of
# Y. INCY must not be zero.
# Unchanged on exit.
#
#
# Level 2 Blas routine.
#
# -- Written on 22-October-1986.
# Jack Dongarra, Argonne National Lab.
# Jeremy Du Croz, Nag Central Office.
# Sven Hammarling, Nag Central Office.
# Richard Hanson, Sandia National Labs.
#
#
# .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
# .. Local Scalars ..
COMPLEX TEMP
INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
$ LENX, LENY
LOGICAL NOCONJ
# .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
# .. External Subroutines ..
EXTERNAL XERBLA
# .. Intrinsic Functions ..
INTRINSIC CONJG, MAX, MIN
# ..
# .. Executable Statements ..
#
# Test the input parameters.
#
INFO = 0
IF ( ! LSAME( TRANS, 'N' )&&
$ ! LSAME( TRANS, 'T' )&&
$ ! LSAME( TRANS, 'C' ) )THEN
INFO = 1
ELSE IF( M<0 )THEN
INFO = 2
ELSE IF( N<0 )THEN
INFO = 3
ELSE IF( KL<0 )THEN
INFO = 4
ELSE IF( KU<0 )THEN
INFO = 5
ELSE IF( LDA<( KL + KU + 1 ) )THEN
INFO = 8
ELSE IF( INCX==0 )THEN
INFO = 10
ELSE IF( INCY==0 )THEN
INFO = 13
END IF
IF( INFO!=0 )THEN
CALL XERBLA( 'CGBMV ', INFO )
RETURN
END IF
#
# Quick return if possible.
#
IF( ( M==0 )||( N==0 )||
$ ( ( ALPHA==ZERO )&&( BETA==ONE ) ) )
$ RETURN
#
NOCONJ = LSAME( TRANS, 'T' )
#
# Set LENX and LENY, the lengths of the vectors x and y, and set
# up the start points in X and Y.
#
IF( LSAME( TRANS, 'N' ) )THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF( INCX>0 )THEN
KX = 1
ELSE
KX = 1 - ( LENX - 1 )*INCX
END IF
IF( INCY>0 )THEN
KY = 1
ELSE
KY = 1 - ( LENY - 1 )*INCY
END IF
#
# Start the operations. In this version the elements of A are
# accessed sequentially with one pass through the band part of A.
#
# First form y := beta*y.
#
IF( BETA!=ONE )THEN
IF( INCY==1 )THEN
IF( BETA==ZERO )THEN
DO 10, I = 1, LENY
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20, I = 1, LENY
Y( I ) = BETA*Y( I )
20 CONTINUE
END IF
ELSE
IY = KY
IF( BETA==ZERO )THEN
DO 30, I = 1, LENY
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40, I = 1, LENY
Y( IY ) = BETA*Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF( ALPHA==ZERO )
$ RETURN
KUP1 = KU + 1
IF( LSAME( TRANS, 'N' ) )THEN
#
# Form y := alpha*A*x + y.
#
JX = KX
IF( INCY==1 )THEN
DO 60, J = 1, N
IF( X( JX )!=ZERO )THEN
TEMP = ALPHA*X( JX )
K = KUP1 - J
DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
Y( I ) = Y( I ) + TEMP*A( K + I, J )
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80, J = 1, N
IF( X( JX )!=ZERO )THEN
TEMP = ALPHA*X( JX )
IY = KY
K = KUP1 - J
DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF( J>KU )
$ KY = KY + INCY
80 CONTINUE
END IF
ELSE
#
# Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
#
JY = KY
IF( INCX==1 )THEN
DO 110, J = 1, N
TEMP = ZERO
K = KUP1 - J
IF( NOCONJ )THEN
DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + A( K + I, J )*X( I )
90 CONTINUE
ELSE
DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + CONJG( A( K + I, J ) )*X( I )
100 CONTINUE
END IF
Y( JY ) = Y( JY ) + ALPHA*TEMP
JY = JY + INCY
110 CONTINUE
ELSE
DO 140, J = 1, N
TEMP = ZERO
IX = KX
K = KUP1 - J
IF( NOCONJ )THEN
DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + A( K + I, J )*X( IX )
IX = IX + INCX
120 CONTINUE
ELSE
DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + CONJG( A( K + I, J ) )*X( IX )
IX = IX + INCX
130 CONTINUE
END IF
Y( JY ) = Y( JY ) + ALPHA*TEMP
JY = JY + INCY
IF( J>KU )
$ KX = KX + INCX
140 CONTINUE
END IF
END IF
#
RETURN
#
# End of CGBMV .
#
END